

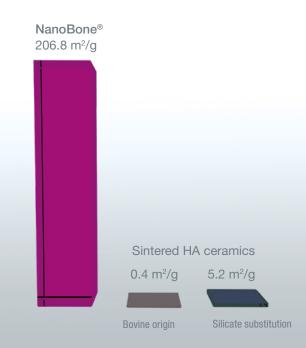
A synthetic alternative to autologous spongy bone - mouldable, hydrostable and osteoinductive

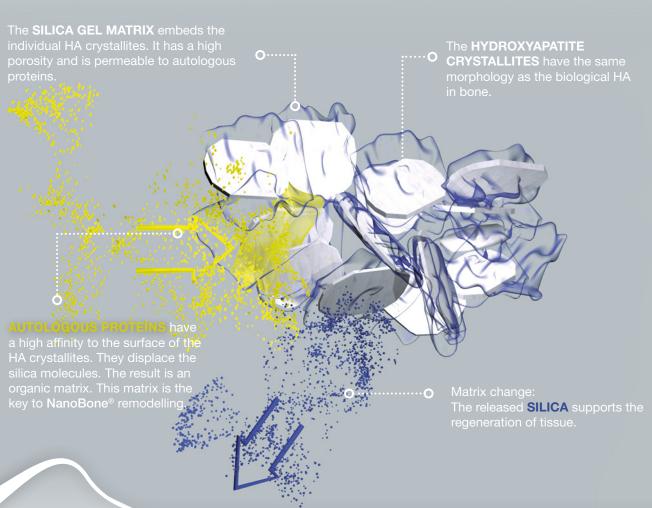
Quality made in Germany

The new generation in bone regeneration

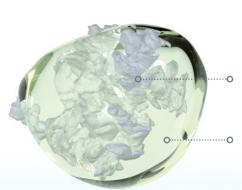
artoss

Nanostructure - optimal bone healing


NanoBone® technology:


Nanostructured hydroxyapatite (HA) and a highporosity silica gel matrix result in an extremely high inner surface which is the key to biological efficiency /1/.

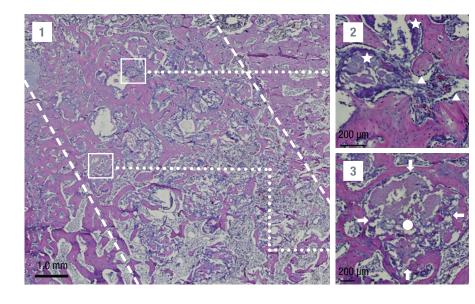
In the initial stage and with vascularisation of the defect, the silica gel matrix is replaced with a matrix of autologous proteins /2/. This is followed by an accumulation of proteins that are important for bone remodelling: BMP-2, osteopontin, osteocalcin /3/. As a result, NanoBone® becomes osteoinductive /4.5/.


- Fast bone formation
- Osteoinductive
- Resorption through osteoclasts

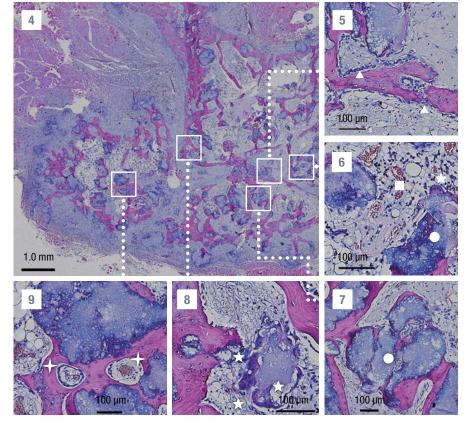
Inner surface of **NanoBone®** in a comparison /1/

Microstructure - perfect handling

The pack of fir-cone-shaped **granules** produces a structure resembling spongy bone.


Hydrogel on polymer silica base holds the granules together. This results in perfect handling: NanoBone® | SBX Putty is mouldable, cohesive, hydrostable and stays in heavily bleeding defects.

The hydrogel replaces the mixing with blood. It is resorbed as quickly as the haematoma. The release of silica during resorption supports the neovascularisation of the defect – **an optimal start of bone healing.**


Histological evaluation

Rabbit femur model

- -- Defect limits
- ★ Osteoclasts
- Osteoblast seam
- Bone tissue in granule
- → Granule limits
- → Osteon
- Blood vessels
- 1 | Haematoxylin and eosin (HE) stain of the defect area 4 weeks after surgery. Spongy bone has grown throughout the defect.
- **2** | Granulate decomposition by osteoclasts.
- 3 | Granule, partially resorbed and mixed with bone tissue.

Osteoinduction – ectopic bone formation in sheep neck muscle

- 4 | HE stain of bone formed ectopically in muscle 12 weeks after surgery; processes correspond to those in bone defect healing
- 5 | Bone growth through osteoblast
- 6 | Granulate resorption through osteoclasts; excellent vascularisation
- 7 | Bone tissue grown through granules
- Granulate decomposition by osteoclasts in addition to bone formation
- 9 | Osteons: bone remodelling

Studies confirm NanoBone® efficiency

NanoBone® ALIF study

A prospective randomised ALIF study showed that NanoBone® yields results that are comparable to those of an allograft. After 6 months, a fusion rate of 96 % was reached in the NanoBone® group /6/.

- 1 | Status before surgery
- 2 | 6 months after surgery

NanoBone® PLIF study

A prospective CT-controlled clinical study on intercorporal fusion showed a fusion rate of 90 % (27 out of 30 segments) after 9 months.

The clinical Oswestry Disability Index (ODI) score gained 28 % for the total collective, the value for the Visual Analog Scores (VAS) even 47 % /7/.

- 3 | Intercorporal spinal fusion with L3-4 connection instability after L4-S1 fusion, 9 months after surgery
- 4 | Intercorporal L5-S1 spinal fusion, 9 months after surgery
- 5 | Multisegmental degenerative L2-S1 instability, 9 months after surgery

NanoBone® – convincing in clinical applications

Indication examples

- Depressed tibia plateau fracture
- Radial fracture
- Pseudarthrosis
- Cyst fills
- Spinal stabilisation
- Defect fill after tumour removal
- Acetabulum reconstruction
- Displacement osteotomy
- Pathologic fractures
- Bone necrosis

A clinical study showed that NanoBone® yields a result with regard to complications and fracture healing rate that is at least comparable with that of standard spongiosaplasty /8/.

Femoral shaft fracture

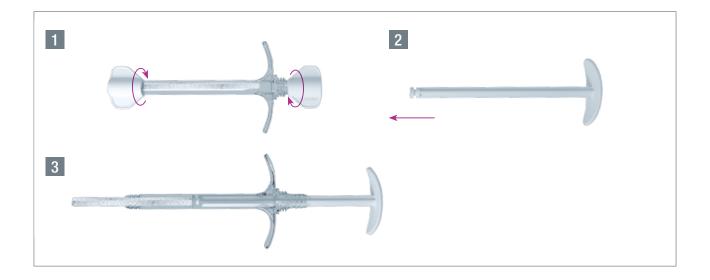
- Before surgery
- 2) After surgery
- 3) Follow-up after 1 year

Infected tibial fracture

- 4) Infection cleaning with Septopal chains
- 5) Defect fill with **NanoBone®** after infection cleaning
- 6) Follow-up after 1 year

Giant cell tumour with cement filling

- 7) Before surgery
- 8) Defect fill with 50 ml NanoBone® Putty after surgery
- 9) 18 weeks after surgery


NanoBone® SBX Putty in QD applicator

Why NanoBone® QD?

- Easy and intuitive application
- Exact placement of NanoBone® | SBX Putty
- Controlled and exact portioning
- Smaller Access to the site of application possible (outer diameter of the applicator only 8 mm)
- Allows retrograde filling of bone defects
- Treatment of bone defects difficult to access thanks to long applicator with extended reach: 185 mm (filling volume 5 ml) or 100 mm (filling volume 1 ml and 2.5 ml)

optimal bone healing with perfect handling

References

NanoBone®

Please do not hesitate to contact us if you have any questions regarding application, product and/or ordering of NanoBone® products

MANUFACTURER

ARTOSS GmbH Fischerweg 421

18069 Rostock | Germany

Phone: +49 (0) 381 | 806 994 0

Fax: +49 (0) 381 | 806 994 99

E-mail: info@nanobone.de

Web: www.nanobone.de

ITEMS LIST FOR NanoBone® I SBX Putty

Order number	Description	Volume
200049	NanoBone® SBX Putty	1.0 ml
200051	NanoBone® SBX Putty	2.5 ml
200052	NanoBone® SBX Putty	5.0 ml
200053	NanoBone® SBX Putty	10.0 ml

ITEMS LIST FOR NanoBone® QD

Order number	Description	Volume
200070	NanoBone® QD	1.0 ml
200071	NanoBone® QD	2.5 ml
200072	NanoBone® QD	5.0 ml
200073	NanoBone® QD	10.0 ml*

^{* 2} x 5.0 ml cartridges in sterile packaging

NanoBone® - Your advantages at a glance

- Controlled osteoinduction
- Optimal handling
- Economically efficient in use

- Powerful nanostructure
- Fast bone formation
- Full remodelling

